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ORBITAL RING SYSTEMS AND JACOB'S LADDERS — |

PAUL BIRCH
45 Brownsville Road, Heaton Moor, Stockport, England.

A method for transferring payloads into space without using rockets is presented: in this, massive rings encircle the
globe in a low orbit, supporting stationary ‘skyhooks’ from which cables hang down to any point on the Earth’s surface..
Vehicles can climb up these ‘ladders’ into orbit, or can accelerate along the rings. The concept of such Orbital Ring
Systems is examined and extended; a large family of possible configurations exists, including systems in any orientation
which precess with the Earth’s rotation, eccentric systems which can span any height range, and also Partial Orbital Ring
Systems, with end-points on the ground, along which vehicles can be launched directly.

I. BASIC CONCEPTS
1.1 Cables Supported by Earth’s Rotation

Various authors, including Artsutanov [1] and Isaacs ef al,
[2], have considered the possibility of dangling a cable from
geosynchronous orbit down to the Earth’s surface, and using
it to hold up a *heavenly funicular’ or *space elevator.” In
geosynchronous orbit, some 36,000 km above the equator,
freely orbiting bodies will go around the Earth in exactly
one day, and therefore stay directly above the same spot on
the equator.

As can be seen in Fig. 1 a very long cable is needed, which
must be able to support both its own weight and the weight
of the space elevator. Overall support comes from the
counterweight, which is situated higher than the geosyn-
chronous orbit and is moving faster than a freely orbiting
body there would be. The *“*centrifugal force™ on the counter-
weight holds up the system.

This scheme has certain disadvantages; for example, since
a body can be in geosynchronous orbit only above the
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Fig. 1. The Space Elevator Concept.

* The author is now with Marconi Space & Defense Systems
Ltd., Stanmore, Middx, HA7 4LY, England.

equator it has often been said that a space elevator cable
must have its base on the equator also. In fact, this
“‘disadvantage” is spurious and a geostationary cable could
be let down to anywhere on the globe, apart from the polar
regions (although an equatorial site would be more conve-
nient). A more important point is that the height to geo-
synchronous orbit is equivalent to 4900 km in a uniform
one-gravity field; this is a very great height from which to
suspend a cable (indeed, a uniform cable of fine steel would
only support about 25 km of its own length without
snapping).

Even with the strongest materials that can be manufac-
tured in quantity today (not including certain ultra-strong
‘whiskers’ that can be produced only as tiny samples) this
scheme is unfortunately not yet practicable,

1.2 Cables Supported by Orbital Rings

The principles of the present design are illustrated in Fig, 2,
A massive ‘Orbital Ring’ is placed in Low Earth Orbit (LEQ);
it does not need to bear large structural stresses, because it

is in ‘free-fall’ everywhere except at the places where the
*skyhooks’ deflect it. These ‘skyhooks’ ride upon Orbital
Rings, supported electro-magnetically, and hold station above
specific points on the Earth’s surface.

An ‘Orbital Ring System’ (ORS) has massive rings in a
low orbit and skyhooks which are geostationary. Cables are
suspended from the skyhooks down to the ground; these
form the ‘Jacob’s Ladders.”

A Jacob’s Ladder is much shorter than a cable to geo-
synchronous orbit would be, and thus does not have to be
made of so strong a material. It is within the reach of present-
day technology.

In the rest of this study (which, I must emphasise, is only
a preliminary and exploratory study of the idea of Orbital
Ring Systems) I shall demonstrate the physical principles
and develop some of the engineering details of several kinds
of ORS. In Part I [ shall be concentrating on the theoretical
aspects of Orbital Ring Systems and Jacob’s Ladders, In
Parts IT and III T shall be concerned with aspects of engineering,
logistics and safety; I shall describe now such Orbital Ring
Systems could be built in the very near future and how they
could be used to transport large numbers of passengers and
large amounts of cargo into space; I shall describe some of
their potential uses, and the economic advantages of the
highly efficient methods of space transport they allow,
which could make conventional launch vehicles and other
rocket-propelled craft outmoded.
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Fig. 2. The Orbital Ring Concept.

2. JACOB'S LADDERS
2.1 Payload of Ladders

The Jacob’s Ladders have to carry both the payload and their
own weight. The most efficient way of doing this is to use
tapering cables, which are therefore thickest where the load
is greatest.

Let the skyhook be at altitude H (I shall be using values
of 300 km and 600 km as being representative of suitable
ORS heights), Then the ladder consists of cables H in length,
strong enough to carry a payload Fp. Let Y be the tensile
strength and p the density of the cables. We need to use
materials with as great a value of Y/p as practicable, in order
to have a high ‘payload fraction,’ P, which is the ratio of Fp
to the gross weight on the skyhook. Let the radius of the
Earth be R and its surface gravity be g.

Considering a cable everywhere at its maximum working
stress we see from Fig. 3 that

Fp = AoY (1)
Now dF = apA
o ()

where a is the acceleration due to gravity.

dh dh

So if F=Fy,y everywhere,

Y dA = aph (4)
dh
Now a =g . R¥(R+h)? (5)
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A ga = Dp _R?dn
I =x Y (Rh)? ©
Ag o
In A pE Rh
= == — (7)
Ay Y (R+h)
AT = A, exp PB H
Y ~ (+HR) ) 8
In terms of forces, or weights,
Fr = F, exp pg
T e NG ) ©)
Y (1+H/R)

So the payload fraction Fp.FFT is given by

Peew e . A, (10)

Y (1+H/R)

Where H<R this may be simplified to

P = exp [‘p;gH_

y ! (11

which gives a conservative estimate for P since gravity de-
creases with height.

Table 1 gives the strength of various materials and values
of 1/P calculated from both the equations (10) and (11).

It is obvious that the graphite and aluminium oxide
‘whiskers’ are by far the strongest materials in the list. How-
ever, they can not yet be manufactured on a large scale;
they show what technological advances can be expected in
the future. Steel is not very suitable, though just feasible in
the case of H = 300 km. Kevlar and fibreglass give much
more favourable payload fractions, and can be used with a



TABLE 1. Payload Fracrions for Ladders.

Orbital Ring Systems and Jacob’s Ladders — [

10°Nm?  10%kem™? km km Eq 2.11 Eq 2.10
Material Y o] (Y /g H 1/P 1/p Refs. for Y, p
Keviar® 34 1.5 230 300 3.69 3.48 (4]
600 13.6 10.9
Glass fibre 3.0 2.25 136 300 9.08 8.22 [5.6]
600 824 56.5
Steel 2.0 7.9 26 300 1.0 » 10 6.1x 10%
600 1.1x10% 1.5x10°
Graphite whisker 21 2.2 980 300 1.36 1.34 171
600 1.84 1.74
36000 . 155. %
Al305 whisker 21 4.0 535 300 1.75 1.7 7]
36000 . 1.0 x 10%*

* Corrected for centripetal acceleration due to Earth's rotation at the equator — i.e. this is the correct figure for a cable up

to geosynchronous orbit.

® Kevlar is a registered trade-mark of DuPont Fibres.

reasonable safety margin. Glass fibre used in the cables
should have compressive surface layers and the cable should
be jacketed under compression with steel, to prevent cracks
and stress concentration (c.f. prestressed concrete and
toughened glass). Similar protection should be provided for
Kevlar ropes.

2.2 Use of Ladders

Payloads can be carried up the ladders into space by vehicles
which use some form of electric motor pushing against the
cable (Fig. 4).

A mass-driver is efficient at transferring energy into pay-
loads and is probably the best choice for the ladder's drive
mechanism (see Ref. 3 for a description of mass-drivers).

It is apparent that the weight on the supporting skyhook
will tend to vary with the payload mass and acceleration.
However, this can be countered by a ground station at the
foot of the ladder, which exerts a variable tension on the
latter and holds FT constant (the tension is Fp when no pay-
load is attached and less when a vehicle is climbing the
ladder).

2.3 System Throughput
Using the net value of the payload, FpN< F[,, where Mp is
Er

the net payload mass and ‘a’ the actual acceleration (assumed
constant), we have

Fpn = Mj (g+a) (12)
Let the time spent climbing the ladder be 7

T = (2Hfa)" (13)
The System Throughput, Sy, is given by

STH = M/t (14)

Substituting from (12) and (13)

payload

% superconducting magnets
1 driving coils

b

Fig. 4. A Vehicle on a Ladder.

STH = FpN (a/2H)"/(atg) (15)
which maximises at a=g
Consider also the ‘muzzle velocity,” V
V2 = 2aH (16)
and the’escape velocity,” V,
V2 = 2gR [ (R+H) (17
Now V., =V, when
a = gR?/ (H(R+H)) (18)

Then for HZR,, we have the system throughput to escape
velocity

477



P. Birch

Sty = Fpn/(2g(R+H))% (19)
STH = 9x10°° Fpy for 0SHS600km  (20)

For passengers we want a ~ | rns'z, a pgentle ride. If
necessary, the passenger vehicle can decelerate at around
20 ms™? near the top, to bring it to a halt at the top of the
ladder, Since a<€p

Sty ~ Fpy (a/2H)*% /g (21)

This is not a very good approximation since in fact the
acceleration would be increased as gravity weakened with
height. However, putting H=600 km into (21) gives a
reasonable lower limit to STy

STH = 9x10°° Fpy (22)

The true value will not be much higher — notice that from
(15) the maximum throughput is given by

STH max = Fpn / (82H)# = 1.5x10™ Fppy, H=600 km

I

2.0x10% Fpy, H=300 km

(23)
A reasonable overall figure is therefore
StH = 10% Fpy (24)
Consider the energy cost to escape velocity.
Specific energy = 14 Vg = gR (25
Specific energy = 62MJ kg™' =~ 17 kW hr/kg (26)

Power required to maintain throughput =~ 6000 Fpy
(27)

Because the energy cost to orbit is only half as much, |
shall use a round figure of about 5 x 10* Fpy for the power
requirement.

2,4 Effect of Weather on Ladders

Wind can produce a sideways force at the bottom end of the
ladder, where it passes-through the lower atmosphere.
According to Newton’s model any surface element placed in
an airstream removes the component of momentum of the
undisturbed airflow perpendicular to the surface.

If we assume uniform velocity and density over a scale
height hg we have

F=V2p ;rhon/2 (28)

Table 2 shows how this wind force is always less than Fp;
the ladder will be blown only a little way out of the vertical
even in a hurricane.

Equation (28) corresponds to a drag coefficient for the
cylinder

CD =1 (?—9)
Measurements show that Cp = 1 over the range of
Reynolds Number, Re ~ 10? to 3 x 10%, with a dip down to
Cp~ /5 at the onset of turbulent flow at Re ~ 5 x 10%, The
Reynolds Number is defined by
Re = pLV/n (30)
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TABLE 2. Wind Force on Ladders.

i Pair s r Fwind
Conditions
ms™! kg m-? m N
Maximum (1) 100 1x10% 0.05 7.9x10%
0.1 1.6 x 107
3 4.7 x10%
let stream (2) 60 2x10? 0.05 5.7x10°
0.1 1.1 x 10°
3 3.4 x 107
Hurricane (3) 50 1x10? 0.05 2.0x10°
0.1 3.9x10°
3 1.2 x 107
Notes:

(1}  This is equivalent to the maximum wind-speed in a tornado,
uniform throughout the whole height of the atmosphere.

(2)  This is applicable where the ladder passes through the central
portion of a major jet-stream. There will be a smooth and
essentially constant flow.

(3 This is about the worst ‘unpredictable’ wind condition the
ladder is likely to have to face.

(4) Reference for wind conditions is NASA TM 78118.

TABLE 3. Oscillations of Ladders.

Transverse Waves

Material Vi (1) Tatmos (2) H 11 (3)
- kms™! 5 km 8
Kevlar 1.5 6.6 300 400
600 800
Fibreglass 1.2 8.3 300 500
600 1000

Vibration of Tubular Ladders {4)

r (4) dfrg (4) pp (5 Vv, (6) v (D
m - ke m> ms”! Hz
0.1 0.02 8.3x 10° 15 49
3 0.03 5.8 x 10* 27 2.9

Notes:

(1) V=T = vjp)"

(2)  Time for waves to pass through atmosphere (nominally 10 km
high).

(3)  Longest eigenperiod of standing waves (A= 2H)

(4}  Tubular ladders as in Appendix 1. 1y is the radius, d the

thickness of the hoops which withstand atmospheric pressure
on the tube.

(5)  This density is high because it includes the mass of the Kevlar
support cables which ‘load’ the vibration of the hoops.

(6) Vg =0.493 (dirg) {EIpL)"ﬁ Young's Modulus for steel,
E=2x 10! Nm?.

{7)  The frequency of the first eigenmode.
vy = 0.157 (d/1o?) (Efpp )%



where 11 is the viscosity, p the density, V the velocity and L
a characteristic scale size. For a cylinder of 0,1 m radius in a
100 ms™' wind Re =~ 10° at sea level, so Newton’s model
and Eq. (28) are good appreximations here.

Wind can also cause oscillations in the ladder; it is
necessary to ask whether resonance effects can cause the
collapse of the ladder. Transverse waves on a stretched
string have a velocity, V¢, where

Vi = (T/w)" (31)

Table 3 gives typical values for ladder oscillations. Since
only the lowest part of the ladder can be excited directly by
the wind, modes up to 500th overtone would be excited,
with periods down to around a second. It would be hard to
build up a resonance in these conditions, Moreover, the sky-
hook and Earth connections can be made resistive and
matched to the line impedance — if necessary, by active
displacement following. Then no standing waves can be set
up and any travelling waves have to build up their amplitude
in ~ 10 km of atmosphere (~ 0.7 seconds).

In tubular ladders an additional mode (or set of eigen-
modes) of vibration exists — see Appendix 1,

Evidently, a Jacob’s ladder can be taken safely through
the atmosphere and down to sea level; wind and weather
should not harm it.

3. ORBITAL RING SYSTEMS (ORS)
3.1  Orbital Rings

For stress-free operation an orbital ring must be in free-fall,
except at the location of the skyhooks. Figure 5 shows the
minimum system, one containing two skyhooks. The ring’s
“orbit™ is composed of the innermost sections of two
eccentric orbits, These orbits are shown as being elliptical;
they could be hyperbolic. The ring “changes track™ at the
position of the skyhooks, altering course through an angle
Af.

Let the ring have line density m and orbital velocity V.
Then, taking H€R, we know that Af is small.

Mass flow past skyhook = mV, (32)
& Velocity change at skyhook = Vya8 (33)
Rate of change of momentum = mV2 A8 (34)

So, by NSL
Fr = mV2 Af (35)

We can calculate AD (see Fig. 6) using the equation for a
conic, which is the form of an orbit in a square-law field.

ljr = acosp+ b (36)
So, at perigee, where r = R+H-AH and ¢=0, we have
atb = 1/ (R+H-AH) (37)
Likewise, at the skyhook, where r = R+H
acost +b =1/ (R+H) (38)
Note that we have included cases where there are more
than two skyhooks; this analysis applies to each indepen-
dently.

Now from (36) we obtain the slope relative to the local
vertical,

Orbital Ring Systems and Jacob’s Ladders — |

Fig . 5. An Orbital Ring System with two Skyhooks.

Fig. 6. Geometry of an Orbital Ring System.

.ir__ asing
dé  (acosgthb)

1
r

At the skyhook, then

tan g = asinq
2 (acosatb)

Substituting from (37) and (38) and simplifying

tanél'i = AH « (14cosa)
2 (R+H-AH) since

When Af is small we have

AR = 2AH  (l1+cosa)
(R+H-AH) sinx

There exists an approximation for small angles,

2 =~ l+cosa
o :

which is still quite reasonable at o = 7/,

So, assuming AH<R ,
Af = 4AH
o R+H)

(39)

(40)

(41)

(42)

(43)

(44)
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There is an upper limit on Af; this is the angle 2§ (Fig. 6),
since Af = 2f when the orbit lies on the straight line SQ
(Vo )

cosi = R+H-AH

__R+H (45)
2 -
g = 2AH (46)

(R+H)
That is
A< 2 24H %
- (47)

R+H

We may reinterpret this, with (44), as an upper limit of
AH and AP as functions of the perigee angle ‘a’.

AH < %0a® (R+H) (48)
A< 2 (49)

The result (49) is also obvious by inspection of the
angles of a polyhedron, which is the limiting case of an ORS
with many skyhooks and high orbital velocity (V5 = =0).
Notice that the maximum number of skyhooks for a given
A# is 2m/AP ; however Af can be decreased while maintain-
ing constant F if V is increased to compensate.

We can show (see, e.g. Ref. 8) that

— 2
b = SR— (50)
VZ(R+H)?
where g is the acceleration due to gravity at the Earth’s
surface and V is the horizontal component of velocity at
the skyhook. Since Af issmall, Vo=V,
Substituting in (37) and (38) we find

V2 = gR? (1 - H/(R+H))

Approximating (1-cosa) by @2 we have

Vo = gH?
R+H+AH (1-2/a*)

(53)

Using (44) and (53) we can write (35) in terms of AH
and a.
4 mgR? .AH/a

FT =
(R+H) (R+H+AH (1-2/a?))

(54)

Table 4 gives values of FT against values of AH and «. It
will be seen that there is little difference between H=300 km
and H=600 km. Because the ring is moving faster at perigee
than at the skyhook it will need to stretch slightly; let the
required fractional extension be ‘¢’. Then by Kepler’s
Second Law

1 +e = AH/(R+H-AH) (55)
Since AH<R+H
e = AH/(R+H) (56)

To avoid undue strain it is better to avoid the larger
values of AH, However, there is no difficulty in arranging a
ring which is extensible by perhaps 1% without fatigue (it
need not be solid) and with a low value of Young’s Modulus.
The latter consideration avoids tension in the ring with
consequent distortion of the orbit,

Hitherto we have tacitly assumed that all skyhooks bear
the same weight, Fy. This need not be so (see Fig. 7). The
perigee swings towards the lighter of a pair of skyhooks,
but the previous analysis still holds for the respective values
of H, AH, & and Fr. If at least one ‘adjustable’ skyhook is
used as well, a given pair of skyhooks can have the required
Fr and location; the position and weight of the extra sky-
hook is easily calculated. Notice that the perigee heights are
all the same; the difference between the values of AH comes
from differences in the height of the skyhooks.

(51)
+H - -COSO
R+H - AH/(1-cosa) Hp = H-AH = (constant around ORS) (57)
Recalling that AH<€R+H we obtain
v = R2 3.2 Possible Orbital Planes of an ORS
o~ _8 (52)
R+H+AH (1-1/ (1-cosa)) Whereas a ladder hanging from geosynchronous orbit is best
situated above the equator, an ORS can be made at any
TABLE 4. Permissable Skyhook Weighis.
H 300 600 km
AH 3 30 300 3 30 300 km
e Fp. 10 P10 Fr.107" Fr.1o®  Fpio Fr.10 N
2 0.54 0.54 0.54 0.49 0.49 0.49
4 1.08 1.09 1.19 0.99 0.99 1.09
2.16 2.27 4.63 1.98 2.07 4.04
16 4.40 5.64 4.02 5.03
32 9.47 114.0 8.64 68.47 -
64 27.33 - - 24.42 - -

m=25 mx 10" kgm™ ;g =9.81 ms’%. Fp calculated by Eq. (54).
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Fig. 7. An Orbital Ring System with Skyhooks of unequal weight.

Fig. 8. Precession of an Orbital Ring.

attitude. A useful possibility is an ORS in a polar orbit.

Figure 8 shows what is needed; a force, F, applied at the
poles, causes the ring to precess at a rate which can be made
equal to the rotation rate of the Earth. The ring is then “geo-
stationary.”

Applying the law of precession (G= I {2xw we find

2F(R+H) = M(R+H)? £ V,/(R+H) (58)

where M is the mass of the ring and £ the precession rate

(equals 2m/day for Earth polar orbit). Thus
F = MQ V, /2 (59)

In Fig. 9 the ORS is shown to be composed of two counter-
rotating rings, with a net angular momentum of zero. The
precessing forces on the two rings are thus equal and opposite;
there is no net couple and no work is done to initiate or
maintain precession. The force between the rings may be

mediated by a skyhook structure at each pole.
It will be seen that the rings are bent through an angle at

Orbital Ring Svstems and Jacob's Ladders — [

Fig. 9. Precession of counter-rotating Rings.

the point of application of the precessing force. This angle,
#p, is given by

op = a2 (R+H) [V, (60)

So ¢p = 10° (61)
Because the two rings are counter-rotating they diverge
after passing through ihe poles. Their paths cross at the equator
(see Fig. 9). Between equator and pole the rings reach a
maximum separation of about 360 km at latitude 23.4°,

Because the rings come together 90° away from where
the couple is applied it is obviously possible to produce the
orthogonal couple in the same way and at the same time; the
ORS can therefore be steered so as to align its axis in any
direction. This control can be used to match to planetary
rotation and to correct for perturbations; no reaction mass
is used up in moving an ORS by this method.

An ORS in which the component rings move a consider-
able distance apart can have certain advantages: both rings
can hold skyhooks which thus can “cover™ a wider area.
Nevertheless there are some advantages in having a skyhook
suspended from two counter-rotating rings and in having the
two rings follow the same path.

In order to have the rings everywhere contiguous it is
necessary to apply the correct sideways force at each point.
Following Fig. 10 it can be shown that the precessing force
per unit length, f, is given by

f = m. 2Q (18 cosd +1 sind) (62)
where the shape of an orbit (in what is now a non-central
field of force) follows

t-r@? -10? sin?f = -gR?*/r? (63)

& 8 + 218 - 122 sinf cosd = 0 (64)
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on station.

The higher and more massive an ORS the less atmos-
pheric drag will affect it; however, even a very thin (1 cm)
ring at 300 km height will have a long enough lifetime to
weather many severe solar maxima if it should lose its
source of momentum. Indeed, it would be possible to fly an
ORS at rather less than 300 km altitude, {aerha;:ls to 150 km
(where the number density goes up to 1017 m™). It appears
that atmospheric drag and the consequent tendency to
orbital decay will not be a problem).

3.4 Electromagnetic Drag on an ORS

Skyhooks may be hung from an ORS by magnetic levitation
also, precessing forces can be mediated the same way. There
will also be a drag force caused by power-dissipating eddy
currents.

Reitz [10] quotes, for levitation above an infinite thin
sheet,

Fprag = 2
FLIFT  OHebV

{72)

where g is the conductivity (0 AJuminium = 3.54 x 107
£'m™") and & is the thickness of the sheet.

We notice that the power loss due to electromagnetic
drag is

Pg = Fr - (2/opyd) (73)
The thickness & may be limited by the skin depth

Sskin = (2opgw)”? (74)
If we consider a skyhook with overall coil length L, then

w™~V,/L (75)

So the minimum length for which & is effectively the
actual thickness is given by

Lg = 6% ougVy/2 (76)

If the true length is less than Lg it is possible to make use
of the full thickness & by weaving the material in ‘Litz wire'
form rather than using a solid surface; this holds its
resistance down to the DC value,

Table 6 gives some typical values, using aluminium for
the conducting sheet. It is evident that the drag is significant
and that a good thickness of metal is important. Choosing a
thickness of 5 cm, perhaps from a strip of aluminium
20 ¢m x 5 ¢m underneath an ORS, and using suitable values
from Tables 1 (1/P=10) and 2 (Fp=2x 107) we find that
Pg = 0.2 GW. This power loss is about ten times the loss by
atmospheric drag on a whole ring, but is still only 0.4% of
the power required to maintain full throughput for the
ladder,

We can see that for a typical ORS in polar orbit (two
counter-rotating rings with r = lmfp = 2500 kgm™) the
total precessing force is = 5 x 10" N; if this is the ORS of
the previous paragraph the power loss will be around
500 GW. Although this amount of power is readily available
in space it is obviously worthwhile to try to reduce this
power requirement.

A high power loss also mitigates against the use of sky-
hooks for carrying passive loads; it suggests that high pavlead
fractions should be sought and that attention should be
given to methods of reducing Fp/F1.

It is feasible that linear induction motors, used to counter
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Fig. 10. Precession of a Continuous Orbital Ring System.

the drag force, could be arranged to cancel most of the eddy
current, thereby reducing power dissipation.

Powell & Danby [11] have suggested a magnetic levitation
scheme in which the **roadbed™ consists of coils containing
series inductance and a diode. They claim to have improved
Fp/FL by an order of magnitude.

A superconducting layer on the ORS would provide a
surface above which a skyhook could ride without any drag
force. Power dissipation would be reduced to cryogenic
losses, about 100 MW for the whole ORS; the power to the
cryostat therefore needs to be about 10 GW (rejecting to
the 300 K of the Earth’s surface), although it could be very
much more efficient if the heat can be rejected to the 3 K
of deep space. Neither additional skyhooks not precessing
magnets would increase this loss.

The Earth’s magnetic field will also cause electromagnetic
drag but since this field is so small (B ~ 10 T) the loss is
negligible (less than 100 kW).

35 Structure of Skyhooks and the ORS

The skyhook will obtain its lift by using superconducting
coils to produce a persistant magnetic field; these will float
above a diamagnetic surface.

If a is the length of the lift coils, and b their width, the
lift force is

Fp = B? abju, = Pap,/nz, (77)

where zq, is the height at which the coils float above the
“roadbed.”

There is obviously a limit to the magnetic field we can
use; in the case of Nb3Sn superconductor a field of 3.5 T
leaves a large safety margin in F.. Also, if the current density
is limited to a value of 2.5 x 10® Am™, with an average mass
density of 4.53 x 10%kgm (3], then the coils will be limited to
a certain maximum current at a particular effective height
from the plane. Let J be the current density. Then

(% /2g)max = %I*b° (78)

So there are two approximate limits on the load per unit
length

magnetic field

Fp < 1x10"b
a 1x 10" p?

for
. (79
current density )

The magnetic field limit dominates for b > 3 c¢m and this
condition will usually be satisfied. Note that the value of b
in the magnetic field limit is really the width of the track
and not of the coil windings; thus the magnetic field limit
can always be made to apply by using skyhook coils big






