Share
Personal Medical System - Capabilities

medibot2
Image from Steve Bowers

Components and Capabilities

Stimplants

In addition to circulating and tissue-residing medicytes personal medical systems operate through a comprehensive network of macroscale implants. Typically clustered around sites of clinical significance (such as organs and major vasculature) these specialised implants monitor their environment and "stimulate" healthy function. Consequently known as stimulants they are the backbone of any medisystem; usually no larger than a centimeter in any dimension an average baseline human may possess one- to three hundred.

In addition to their diagnostic and therapeutic role stimplants are responsible for synthesising new medicytes. Whilst some medicyte types are capable of self replication manufacture by stimplants is safer, faster and more energy efficient; largely due to their far greater relative size and specialised fabrication clusters.

Regenerative Scaffold

The principle mechanism by which a medisystem will repair damaged tissue. Free-floating medicytes are recruited to the affected area where they synthesise penetrating fibrils and bonding together to form a mycelia-like structure. The fibrils proliferate to create an artificial extra-cellular matrix with some components safely breaching cell membranes for cytoplasmic regulation. Dead and dying cells along with any debris are absorbed by the scaffold which uses the material to grow denser. Surviving cells are stimulated to proliferate at accelerated rates before being directed along the scaffold to take their correct position and assume their intended function. Where possible medicytes embedded in the matrix will make up for any loss-of-function due to the damaged tissue. For example; damage to an organ such as the liver will result in the growth of blood-filtering medicyte clusters that will connect up to local vasculature, bypassing the affected area.

The speed of regeneration can vary depending on the wound and the medisystem however a typical scaffold can cultivate healthy tissue at a rate of 1mm per hour. The loss of a significant quantity of body mass, such as a severed limb, can be replaced by a layer of scaffold that will appear to ride on a rapidly growing limb.

If mechanical support/manipulation is needed (e.g. for broken bone) a medisystem can quickly assemble in vivo splints. Specialised toroidal medicytes cluster in surrounding vasculature and attach to the epithelial lining. There they can expand or contract, widening or narrowing the vessel. By connecting to each other these medicytes can massively increase the stiffness of the vessel and by working in tandem with those in other vessels can apply pressure across tissues. Whilst this can lead to vessels being damaged (including bursting entirely) it is usually worth it.

Body Modification

Owing to the sophistication of medisystems it is simply a matter of programming to allow a medisystem to alter the host's bodily attributes and appearance. Basic phenotypic tweaks include changes to height, weight, body fat/muscle percentage and distribution, skin tone/colouring, eye colour, bone structure, facial proportions, hair colour and length, natural odor, body shape, secondary sexual characteristics and many more. For cosmetic reasons it is common for medisystem users to parameterise their desired physical characteristics. From then on their system will act to keep their body within optimal conditions.

Beyond this radical tweaks are possible but often require the installation of genemods and an iterative process of guided tissue differentiation and development. Autodoc modification (or simply destructive upload followed by engeneration) is faster but many sophonts enjoy the experience of transitioning sex, race and even clade. The most radical of changes can take months to complete and require multiple intermediate forms, for example: if changing from air to water breathing an amphibious stage must be endured.

In most major empires sophonts regularly use bodymods to match the current vogue. Indeed when travelling between cultures it is common for bionts to download not only local immunity protocols but to also run their phenotype through a Cultural Beauty Optimiser and take on the recommended bodymods. Some sophots take such things quite seriously and are constantly altering their body forms to match the style of the hour.

Contraception and Reproduction

Personal medical systems can easily prevent pregnancy in a variety of side-effect free manners, regardless of the sex of the sophont. Whilst in-built contraceptive ability is common in bionts thanks to historical genemods amongst sophonts lacking the appropriate tweak medisystem contraceptive is quite convinient.

If an individual does wish to reproduce sophisticated medisystems can infiltrate the uterus/egg and integrate with the developing foetus. Growing along with the developing offspring this nascent medisystem will provide pre-natal care and ensure that the child is born with their own personal medical system fully integrated. In the case of hopeful parents with incompatible genomes (even within clades personal choices in genemods can cause lethal conflicts) a medisystem can attempt to compile a viable compromise. However this process carries risk, particularly in inter-clade relationships. Most personal medical systems are programmed to err on the side of caution and will prevent pregnancy if it is unsure of a viable genome. If errors are found in a developing foetus the medisystem can safely abort it or place it into biostasis until expert help can be obtained (this often requires transplantion to an artificial womb and total genome modification).

Lazarus Procedure

A rare feature of transapient designed medisystems that can allows for dead sophonts to be resurrected. Whilst bail-out systems are viewed as being unethical a Lazarus procedure is far tamer. In properly angelnetted societies medisystems capable of performing Lazarus procedures are unnecessary; firstly because such trauma is unlikely to occur to an individual and secondly rescue and recovery are far more efficient. Even in some societies without angelnets most sophonts have other options such as transmitting their mindstate to an Engenerator or relying on back up recovery. Consequently medisystems capable of performing Lazarus procedures are mostly seen in partially angelnetted societies in the Middle Regions, though they are popular with semperists everywhere depending on whom you ask these individuals are either prepared or paranoid.

If the damage to the host is too great the resident medisystem will euthanise the user, ensuring that their backup implant has an up-to-date mindstate copy. In conjunction with this mycelial smart matter will be released that will begin digesting the host body. Rapidly growing the mycelium bursts through the skin and forms a diamondoid cocoon. Biomass is recycled to construct the machinery necessary for engeneration; if insufficient materials are present the cocoon can grow branching roots that attempt to harvest material from the environment. In the unlikely scenario the Lazarus procedure is invoked due to a fatal infection the disassemblers will attempt to destroy the pathogen. If this cannot be done (e.g. the host is suffering attack from malicious technocytes) the pathogen will be encapsulated in layers of diamond and sacs containing chemicals for highly exothermic reactions. The cocoon can then eject the capsule (in a manner akin to a ballistic weapon) simultaneously breaking the sacs and heating the capsule to extremely high temperatures.

Within the cocoon a new body is grown for the host over a period of a few days. During this process the the host can even be instanted in a virch to overview the construction of their new body. This has led to some unexpected consequences with some users invoking an unnecessary Lazarus procedure for the cosmetic purposes of radical body augmentation

Personal Medical System Immune Response

Upon encountering a foreign agent (virus/bacteria/toxin/nanite) the components of the medisystem will execute responses according to the severity and nature of the threat. The average medisystem deals with infection on a regular basis but nearly all such infections are dealt with long before the host notices. Broadly these responses involve:

  • Detection of the agent: this process occurs through a variety of mechanisms. Initially chemical sensors detect the presence of various soluble factors either released by the agent or created by various warning devices constantly released by medisystems. This allows immune medicytes to migrate towards an infectious agent, effectively 'sniffing' them out. For physical detection and latching immune medicytes are covered with millions of fibres, the tip of each fibre is coated with a different 'grip' molecule that is designed to bind to different types of antigen (but not be able to bind to human tissue). Upon binding a fibre activates a signalling pathway inside the medicyte allowing it to determine which type of grip has bound to the pathogen. The majority of fibres are then reconfigured to similar grips (though not all in case other antigens can be found) with mutation/selection of fibres rapidly evolving the best grip. All the while the bound fibres contract in an attempt to pull the agent into the medicyte in a manner akin to phagocytosis (if the agent is too large multiple medicytes can bind together to produce a 'giant multibot'). Once inside the agent is encapsulated in a disassembly capsule where it is atomically disassembled providing a highly detailed profile that is transmitted to the rest of the medisystem (and through the DNI to medical libraries on the Net).
  • Using the profile a medisystem can enact appropriate protocols to get rid of the foreign agent. This is a two-step processes involving the synthesis and release of targeted delivery systems (carrying antibodies, antibiotics, antivirals, antirobotics, synth-phages etc) designed to make the host's body toxic to the agent. Most immune medicytes will become microvorous (leaving some to continue disassembly so as to catch different agents that may be present). Agents are phagocytosed into the medicytes where they are encapsulated before being assaulted by whatever regimen best destroys them e.g. changing the temperature, pH, pressure, composition, applying electricity or even using appropriate grip fibres to tear the agent to pieces. Invariably a combination of destructive techniques is used to speed up throughput; the waste products are then converted to non-toxic particles and released in vesicles that can be picked up by medicytes tasked with clean-up.
  • Once the infection has been dealt with a medisystem can upload the technique used to medical libraries on the 'net to be downloaded in updates to other sophont's personal medical systems. This establishes a system of networked immunity in a population, where many individuals gain immunity from a disease if just one person manages to fight it off.
  • To protect surrounding tissues from damage prophylactic medicines (appropriately prescribed based on the agent's profile) are administered. If needed quarantining of diseased tissues through rapid fibrous encapsulation can occur.
  • A regenerative scaffold is synthesized in damaged tissue and regenerates the tissue through absorption/regeneration (this process occurs in tandem with fighting infection). If nutrient supply is insufficient the medisystem can cause the host to feel strong cravings for certain foods. For this purpose customised nutrient broths can be prescribed by the controlling subsentient program (orders can even be sent directly from to household assemblers). Occasionally the heat produced by a regenerative scaffold may result in the host becoming temporarily feverish (though nerve-interfacing components can remove any feelings of discomfort).
  • In emergency situations: quarantining affected area and sacrificing tissue to save key organs. Medisystems can then fight infection using far more destructive "scorched-Earth" strategies (utilising corrosive chemicals, burning/electrifying infected tissue) that can greatly damage host tissue. Over time if the damage is not reversed key organs will be sacrificed in order of importance with protecting the brain remaining paramount. If this too fails most medisystems are capable of emergency upload into a memory box (unnecessary if the sophont is fitted with a suitable DNI and backup). Some medisystems are even capable of initiating bailouts or Lazarus procedures (ultratech only).
  • Unprecedented infections: in response to foreign agents personal medical systems compare the profile of the agent to a medical library that has limited capability to innovate a response. There is danger to innovative responses as untested medical regimens can have disastrous side effects. If the medisystem cannot fight the infection more sophisticated medical facilities may be required. If these facilities are not available (or against the hosts wishes) the medisystems can switched to scorched-Earth strategies however these procedures involve great discomfort. Some medisystems include compubone augmentation to give huge computational power to simulate and design new regiments, if available computational resources across the Net along with dedicated AI can be combined with the host's efforts. Unfortunately due to the incredibly high number of variables in a host's biology this technique is not full-proof but is much more successful than scorched-Earth strategies. If the battle seems lost, emergency procedures are enacted such as upload into a memory box (unnecessary if the sophont is fitted with a suitable DNI and backup). Some medisystems are even capable of initiating bailouts or Lazarus procedures (ultratech only).

Personal Medical System Trauma Response

A medisystem trauma response is strongly determined by the nature of the trauma. Broadly these responses involve:

  • Detection of the trauma through chemical, ultrasound, micromechanical detection.
  • Synthetic clot response to limit damage (also activates medisystem immune response). Even major wounds can be clotted in seconds.
  • If the wound requires (e.g. if the wound is a large gash or a limb is broken) medicytes located on the skin will rapidly (within minutes) spray tough protein fibres (harvested from the host) over and around the wound to form a protective cast.
  • A regenerative scaffold is synthesized in damaged tissue and regenerates the tissue through absorption/regeneration. If nutrient supply is insufficient the medisystem can cause the host to feel strong cravings for certain foods. For this purpose customised nutrient broths can be prescribed by the medisystem's governing subsentient (orders can even be sent directly from the to household assemblers). Occasionally the heat produced by a regenerative scaffold may result in the host becoming temporarily feverish (though nerve-interfacing components can remove any feelings of discomfort).
  • Medicytes in tissue severed from the body will enact different protocols to place the tissue in stasis. Partial scaffolds are grown on the surfaces previously connected to the body. In this form the tissue can be placed into its original place in the body where the scaffold will bond it back in, the tissue can then be regenerated. This option is useful in situations such as the severance of a limb as the sophont can simply pick the limb back up and reattach it, saving far more energy and time than waiting for the limb to regrow.
  • In cases of severe trauma; scaffold will redirect most blood flow from the damaged tissue and, where necessary, medicytes/scaffolds will replace the function of the damaged tissue (e.g. skin medicytes will rapidly replicate and stretch to provide a protective covering)
  • In cases of terminal decline: quarantining affected area and sacrificing of tissue to save key organs. Over time if the damage is not reversed key organs will be sacrificed in order of importance with protecting the brain remaining paramount. If this too fails most medisystems are capable of emergency upload into a memory box (unnecessary if the sophont is fitted with a suitable DNI and backup). Some medisystems are even capable of initiating bailouts or Lazarus procedures (ultratech only).

 
Related Articles
 
Appears in Topics
 
Development Notes
Text by Ryan B
Initially published on 16 October 2011.

 
 
>